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Abstract

The asymptotic behaviours for small and large amplitudes, A, of the period for a nonlinear oscillator, where the square

of the angular frequency depends quadratically on the velocity, are obtained. These asymptotic expressions are compared

with the exact period, T(A), and quite an acceptable error for a wide range of amplitudes is obtained. In addition we show

that the product of the amplitude and the period, AT(A), reaches 2p when the amplitude tends to infinity.

r 2006 Elsevier Ltd. All rights reserved.
Recently Mickens has published two interesting papers [1,2] about nonlinear oscillators

€xþ ð1þ _x2Þx ¼ 0 (1)

with initial conditions

xð0Þ ¼ A _xð0Þ ¼ 0. (2)

In the first paper [1], he concluded that all the solutions to Eq. (1) are periodic and its angular frequency,
o(A), as a function of the initial amplitude A, shows no singularities. This implies that the exact period, T(A),
of this oscillator is well-defined for all values of the amplitude. In the second [2], Mickens obtained the exact
expression for the period T(A) and studied some of its properties. He concluded that T(A) is a monotonic
decreasing function of A, and that the periods for A ¼ 0 and for A!1 are 2p and 0, respectively. He also
presented a small amplitude approximation for the period whose error is quite acceptable for amplitude
values in the range 0pAp1. Finally, he stated that a future problem would be to obtain an asymptotic
representation for the exact period for large values of A.

The main purpose of this Short Communication is to investigate the asymptotic behaviours of the period for
the nonlinear oscillator given by Eq. (1). We are going to obtain asymptotic representations of this period not
only for large values of amplitude A but also for small amplitudes. We are also going to compare these
approximations for small and large amplitudes with the exact period obtained by means of numerical
integration.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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In order to obtain an asymptotic representation for small amplitudes we consider the expression for the
exact period, T(A), for the nonlinear oscillator given by Eq. (1) taking into account the initial conditions in
Eq. (2). This expression is [2,3]

TðAÞ ¼ 4

Z A

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðA

2�x2Þ � 1
p . (3)

The linear transformation, x ¼ Au, reduces this equation to the form

TðAÞ ¼ 4A

Z 1

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eA2ð1�u2Þ � 1

p . (4)

For very small values of the amplitude A it is possible to take into account the following approximation:

eA2ð1�u2Þ � 1 ¼ A2ð1� u2Þ þ 1
2
A4ð1� u2Þ

2
þOðA6Þ (5)

and Eq. (4) can be approximated by the expression

TðAÞ � Ts1ðAÞ ¼ 4A

Z 1

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ð1� u2Þ þ 1

2
A4ð1� u2Þ

2
q , (6)

where Ts1(A) is the asymptotic period for very small amplitudes. Eq. (6) can be rewritten as

Ts1ðAÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2þ A2

s Z 1

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� u2Þ 1�

A2

2þ A2
u2

� �s . (7)

The integral in Eq. (7) can be written in terms of a complete elliptic integral of the first kind K(q) [3,4] and
then the approximate period can be obtained as

Ts1ðAÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2þ A2

s
KðqÞ, (8)

where q is defined as follows:

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2þ A2

s
. (9)

For very small values of A it is easy to see that q will also be small and then it is possible to consider the
following approximation for K(q):

KðqÞ ¼
p
2

1þ
1

4
q2

� �
. (10)

Taking into account Eqs. (8)–(10), it follows that an asymptotic representation for the period, Ts1, for very
small amplitudes is

Ts1ðAÞ ¼

ffiffiffi
2
p
ð8þ 5A2Þ

2ð2þ A2Þ
3=2

p. (11)

It is easy to see that Ts1ð0Þ ¼ 2p and if we expand in a power series Eq. (11) we obtain

Ts1ðAÞ � 2p 1�
A2

8

� �
, (12)

which is the same expression that can be obtained if we expand in a power series the approximate period
obtained by means of the first-order balance method (see for example Eq. (2) in Ref. [1] or Eq. (28) in Ref. [5]).

The approximation in Eq. (6) allows us to obtain an approximate expression for the period for small values
of A. However, it is difficult to get a higher order approximation from this equation. Higher order
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approximations for small amplitudes can be found as follows. We do the power series expansion of the
integrand of Eq. (4) (by including the factor 4A) around the point A ¼ 0 and we obtain

4Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eA2ð1�u2Þ � 1

p ¼
4ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2
p 1�

1

4
ð1� u2ÞA2 þ

1

96
ð1� u2Þ

2 A4 þ
1

384
ð1� u2Þ

3

�

� A6 �
1

10240
ð1� u2Þ

4 A8 þ � � �

�
. ð13Þ

Integrating Eq. (13) between 0 and 1 a more accurate expression for the period for small values of A is
obtained, Ts2

Ts2 ¼ 2p 1�
1

8
A2 þ

1

256
A4 þ

5

6144
A6 �

7

262144
A8 þ � � �

� �
. (14)

Comparing this with the exact value of the period calculated numerically, it can be seen that the relative
error of the approximate values for small amplitudes is less than 1% for Ao1:12 if Eq. (11) is used, and for
Ao1:92 if Eq. (14) is used. Considering Eq. (14), the relative error for A ¼ 1:12 is 0.004%, whereas taking
Eq. (11), the relative error for A ¼ 1:92 is 11%. It is obvious that if more terms are taken in Eq. (13) it is
possible to obtain higher order approximations for small amplitudes. Thus, for example, if we take up to term
A14 the relative error is less than 1% for A ¼ 2:2.

Now we are going to obtain an asymptotic representation for large amplitudes. Firstly we consider the
expression for the exact period T(A) given in Eq. (3). If we make the following change of variable in Eq. (3):

A2 � x2 ¼ z, (15)

then

dx ¼ �
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � z2
p dz. (16)

Introducing Eqs. (15) and (16) into Eq. (3) gives

TðAÞ ¼
1

A

Z A2

0

2 dzffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

z

A2

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
ez � 1
p

. (17)

Now we do the power series expansion of ð1� z=A2Þ
�1=2 and we obtain

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

z

A2

r ¼ 1þ
z

2A2
þ

3z2

8A4
þ

5z3

16A6
þ � � � . (18)

Then, the integrand of Eq. (17) can be approximated by

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

z

A2

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
ez � 1
p

¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

ez � 1
p 1þ

z

2A2
þ

3z2

8A4
þ

5z3

16A6
þ � � �

� �
. (19)

This approximation needs to be integrated with respect to z from 0 to A2. But, due to the exponential decay
in the integrand, only exponentially small errors are incurred if we extend the upper limit of integration all the
way to infinity. Then, we can calculate the approximate period for large amplitudes using the integral

1

A

Z 1
0

2 dzffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

z

A2

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
ez � 1
p

¼
1

A

Z 1
0

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
ez � 1
p 1þ

z

2A2
þ

3z2

8A4
þ

5z3

16A6
þ � � �

� �
dz: (20)
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For very large values of A, Eq. (20) can be approximated by the expression

Tl1ðAÞ ¼
1

A

Z 1
0

2 dzffiffiffiffiffiffiffiffiffiffiffiffiffi
ez � 1
p ¼

2p
A

, (21)

where Tl1(A) is an asymptotic period for very large amplitudes. A more accurate approximation can be
obtained integrating Eq. (20) and the result is

Tl2ðAÞ ¼
a1

A
þ

a3

A3
þ

a5

A5
þ

a7

A7
þ � � � , (22)

where

a1 ¼ 2p ¼ 6:283185308, (23)

a3 ¼ 2p log 2 ¼ 4:355172181, (24)

a5 ¼
p
4

p2 þ 3ðlog 4Þ2
� �

¼ 12:27973215, (25)

a7 ¼
5p
8

p2 log 4þ ðlog 4Þ3 þ 12zð3Þ
� �

¼ 60:41882910. (26)

In Eq. (26), z(s) is the Riemann Zeta function defined as [6]

zðsÞ ¼
X1
k¼1

1

ks (27)

for s41.
From Eqs. (21) and (22) it is easy to see that

Lim
A!1

TðAÞ ¼ 0. (28)

Another important conclusion from Eqs. (21) and (22) is

Lim
A!1
ðATðAÞÞ ¼ 2p. (29)

When this is compared to the exact value for the period calculated numerically, it can be seen that the
relative error of the approximated values for large amplitudes is less than 1% for A48:46 using Eq. (21), and
for A42:62 using Eq. (22). Considering Eq. (22) the relative error for A ¼ 8:46 is 0.0003%, whereas taking
Eq. (21), the relative error for A ¼ 2:62 is 14%.
Table 1

Comparison of the asymptotic representations of the period for very small amplitudes, Ts1 (Eq. (11)), and very large amplitudes, Tl1

(Eq. (21)), with exact period, T (Eq. (3)), and relative errors

A T(A) Ts1(A) Tl1(A) Relative error (%)

0.01 6.2831 6.2831 0.0

0.1 6.2753 6.2753 0.0

1 5.5272 5.5577 0.6

1.11 5.3589 5.4136 1.0

1.28 5.0802 5.1829 2.0

1.57 4.5587 4.7856 5.0

4.09 1.6168 1.5362 5.0

5 1.2966 1.2566 3.0

6.06 1.0581 1.0368 2.0

8.42 0.7538 0.7462 1.0

10 0.6328 0.6283 0.7

100 0.062836 0.062832 0.006



ARTICLE IN PRESS

109876543210
0

1

2

3

4

5

6

7

8

Pe
ri

od
, T

Amplitude, A

Fig. 1. Comparison of the asymptotic representations of the period for very small amplitudes, Ts1, (Eq. (11)) and very large

amplitudes, Tl1, (Eq. (21)), with exact period, T, — (Eq. (3)).

Table 2

Comparison of the asymptotic representations of the period for small amplitudes, Ts2 (Eq. (14)), and large amplitudes, Tl2 (Eq. (22)), with

exact period, T (Eq. (3)), and relative errors

A T(A) Ts2(A) Tl2(A) Relative error (%)

0.01 6.2831 6.2831 0.0

0.1 6.2753 6.2753 0.0

1 5.5272 5.5273 0.005

1.92 3.9069 3.9466 1.0

2.06 3.6543 3.7286 2.0

2.26 3.3140 3.4791 5.0

2.36 3.1553 3.3096 5.0

2.46 3.0052 3.0938 3.0

2.53 2.9054 2.9619 2.0

2.62 2.7836 2.8111 1.0

10 0.6328 0.6328 0.0

100 0.062836 0.062836 0.0
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Table 1 and Fig. 1 present the comparison of asymptotic representations for very small (Eq. (11)) and very
large (Eq. (21)) amplitudes with an accurate numerical integration of the period given in Eq. (3). Only for
values of A between 1.11 and 8.42 is not possible to obtain the period with a relative error less than 1% using
these asymptotic representations. Finally, Table 2 and Fig. 2 present the comparison of asymptotic
representations for small (Eq. (14)) and large (Eq. (22)) amplitudes with an accurate numerical integration of
the period given in Eq. (3). As we can see, the error is quite acceptable for wide ranges of amplitude values.
Only for values of A between 1.92 and 2.62 is not possible to obtain the period with a relative error less than
1% using the asymptotic representations presented in this Short Communication (Eqs. (14) and (22)).

In summary, asymptotic representations both for small as well as for large amplitudes have been derived for
the period of the nonlinear oscillator given by Eq. (1). With these asymptotic approximations it is possible to
determine the period in the ranges Ap1:92 and AX2:62 with a relative error less than 1%. We have also seen
that Tð0Þ ¼ 2p and ATðAÞ ! 2p when A!1.
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Fig. 2. Comparison of the asymptotic representations of the period for small amplitudes, Ts2, (Eq. (14)) and large amplitudes, Tl2,

(Eq. (22)), with exact period, T, — (Eq. (3)).
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